Mouse models of acute and chronic hepacivirus infection

Eva Billerbeck,1 Raphael Wolfsberg,2 Ulrik Fahnhøe,2 Jing W. Xiao,3 Corrine Quirk,1 Joseph M. Luna,1 John M. Cullen,3 Alex S. Hartlage,4 Luis Chiriboga,5 Kalpana Ghoshal,6 W. Ian Lipkin,5 Jens Bukh,5 Troels K. H. Scheel,1,6 Amit Kapoor,1 Charles M. Rice1

An estimated 71 million people worldwide are infected with hepatitis C virus (HCV). The lack of small-animal models has impeded studies of antiviral immune mechanisms. Here we show that an HCV-related hepacivirus discovered in Norway rats can establish high-titer hepatotropic infections in laboratory mice with immunological features resembling those seen in human viral hepatitis. Whereas immune-compromised mice developed persistent infection, immune-competent mice cleared the virus within 3 to 5 weeks. Acute clearance was T cell dependent and associated with liver injury. Transient depletion of CD4+ T cells before infection resulted in chronic infection, characterized by high levels of intrahepatic regulatory T cells and expression of inhibitory molecules on intrahepatic CD8+ T cells. Natural killer cells controlled early infection but were not essential for viral clearance. This model may provide mechanistic insights into hepatic antiviral immunity, a prerequisite for the development of HCV vaccines.

Hepatitis C virus (HCV), a major cause of human liver cirrhosis and cancer, is narrowly restricted to the human liver (1). Currently, there are no immune-competent small-animal models for HCV, and this limits the study of host-virus interactions and the development of vaccine strategies (2). A prophylactic and protective vaccine against HCV, which will likely be needed for global HCV eradication, does not exist (3).

Several HCV-related hepaciviruses have been discovered in horses, bats, and wild rodents (4). In 2014, a hepacivirus was identified in Norway rats from New York City (5) and named Norway rat hepacivirus (NrHV) or rodent hepacivirus-nr-1 (RHV-nr-1). Similar to HCV in humans, NrHV can establish a hepatotropic infection in rats (6). Rats infected with NrHV developed persistent infection, immune-competent mice cleared the virus within 3 to 5 weeks. Acute clearance was T cell dependent and associated with liver injury. Transient depletion of CD4+ T cells before infection resulted in chronic infection, characterized by high levels of intrahepatic regulatory T cells and expression of inhibitory molecules on intrahepatic CD8+ T cells. Natural killer cells controlled early infection but were not essential for viral clearance. This model may provide mechanistic insights into hepatic antiviral immunity, a prerequisite for the development of HCV vaccines.

We first explored whether NrHV could establish infection in the immune-compromised mouse strains NRG (NOD-Rag1−/− IL2Rγ−/−, A129 [IFNReβ−/−], and AG129 [IFNReβ−/− IFNRγ−/−] that lack adaptive immunity, type I, and type I/II interferon (IFN) signaling, respectively. We infected 4-week-old mice intravenously with 10⁴ genome equivalents (GE) of NrHV derived from the serum of an infected laboratory rat. NrHV established a high-titer (10⁶ to 10⁸ GE per milliliter of serum) chronic infection in these mice (Fig. 1A). Mice lacking MAVS (mitochondrial antiviral signaling protein) cleared the virus within 3 weeks postinfection (p.i.) (Fig. 1A).

Intravenous infection of the immune-competent mouse strains C57BL/6J and BALB/c with 10⁴ GE resulted in a high-titer (10⁶ to 10⁸ GE/ml serum) acute resolving infection (Fig. 1B). NrHV derived from rat serum was cleared significantly faster than NrHV passed one time through NRG mice (Fig. 1B), indicating that NrHV can adapt to the mouse host. To test the extent of NrHV adaptation in NRG mice, we performed either 12-week long-term adaptation in one mouse or serial-passage adaptation through five mice (4-week infection of each mouse) (fig. S1A). We then challenged naïve NRG and C57BL/6J mice with 9 × 10⁴ GE of either the pooled adapted (long-term pool or serial pool) or the parental virus. Adapted viruses showed 0.5 to 1 log higher viral titers at week 1 p.i. and persisted longer in C57BL/6J mice than did the parental virus (Fig. S1B), suggesting increased viral fitness in the mouse host.

Comparing the consensus NrHV genome open reading frame (ORF) sequences of the rat inoculum with those of the adapted viruses revealed changes in 2 and 59 nucleotide positions in the long-term and serial-passage pool, respectively (fig. SIC). Phylogenetic analysis of full-ORF clones revealed the presence of two subpopulations in the inoculum; the minor one was selected during the serial passage (Fig. 1C and fig. S1D). Single coding mutations in viral envelope proteins E1 and E2 occurred in both pools and in individual NRG mice from passage 5 of the serial adaptation (Fig. 1C, fig. S1E, and tables S1 and S2). The E1 mutation V353S (Val353→Ser) (serial pool) or T959N (Thr959→Asn) (long-term pool), represent putative mouse adaptive mutations, as they were maintained in challenged C57BL/6J mice. Mutations at amino acid position 550, combined with at least one mutation in the cluster 361/369/370/371, were selected in NRG mice, but were immediately lost in C57BL/6J mice. Changing position 550 would disrupt a predicted Nx(S/T) glycosylation site (where x is any amino acid except proline), possibly de-shielding neutralization epitopes as observed for HCV (6). For subsequent experiments we used serial pool virus as our source of NrHV.

Our results indicate that NrHV is both highly infectious and hepatotropic in mice. Even a low-dose infection with 10⁴ GE resulted in high-titer viremia. The dose did not influence the outcome of infection, as mice infected with 10⁵, 10⁶, 10⁷, and 10⁸ GE cleared the virus with similar kinetics. In contrast, age influenced clearance: 4-week-old mice typically cleared the virus by week 5 p.i., whereas 2- to 6-month-old mice cleared the virus by week 3 p.i. (fig. S2, A to C). We consistently detected high viral titers in liver tissue (10⁶ to 10⁷ NrHV GE per gram of tissue) but not in spleen, kidney, and lung (Fig. 1D). NrHV replication was dependent on miR-122, a liver-specific microRNA required for HCV replication (7, 8) (Fig. 1E).

Like HCV in humans, NrHV infection was not associated with signs of acute disease or mortality. Chronically infected NRG and AG129 mice showed minimal to mild liver inflammation at week 35 p.i. (fig. S3).

To identify the cellular mediators of NrHV clearance, we characterized the immune response during acute resolving NrHV infection in 8-week-old C57BL/6J mice. High-titer viremia was detectable as early as 24 hours p.i.; titers started to decline at day 15 p.i. and were undetectable at day 21 p.i. (Fig. 2A). Early acute infection (days 3 to 9 p.i.) was associated with an expansion of intrahepatic Ly6C+ monocytes and NKp46+ NK cells (Fig. 2B). Starting at day 9 p.i., we observed a substantial increase in proliferating (Ki67+) intrahepatic CD4+ and CD8+ T cells. These cells were characterized by a CD44+ effector phenotype with an antiviral type 1 differentiation signature (9) as indicated by high T-bet expression and IFN-γ production (Fig. 2, B to E, and fig. S4, A and B). CD8+ T cells also showed a significant up-regulation of granzyme B (fig. S4C). The T cell response was predominant in the liver and less pronounced in peripheral blood and spleen (Fig. 2 and fig. S4). High levels of intrahepatic effector T cells coincided with a decline in viremia starting at day 15 p.i. and were associated with elevated alanine transaminase (ALT) levels (Fig. 2F), indicating T cell-mediated liver injury. Hepatic leukocyte infiltration was confirmed by histology (Fig. 2G). We detected NrHV-specific IFN-γ production by CD4+ and CD8+ T cells in response to peptide
Floret Ng et al., Science 357, 204–208 (2017)

Fig. 1. NrHV establishes hepatotropic infection in common laboratory mice. Four-week-old mice were infected intravenously (i.v.) with 10⁴ GE of NrHV. Viremia (NrHV RNA GE/ml) was analyzed by reverse transcription–quantitative polymerase chain reaction (RT-qPCR). LOQ: limit of quantification; n.d.: not detectable. (A) Viremia in NRG, A129, AG129, and MAVS⁻/⁻ mice infected with rat-serum-derived NrHV. (B) Viremia in C57BL/6J and BALB/c mice infected with either rat- or NrHV- serum-derived virus. (C) NrHV sequence development during mouse passage (see fig. S1). Percentages of two identified subpopulations in the rat inoculum and long-term and serial pools are shown. Below, putative mouse adaptive positions (all variants <1% in the inoculum). Fraction of variants determined by deep sequencing of the pools or consensus ORF sequences from the nine mice of the last serial passage and four C57BL/6J mice challenged with the serial pool (week 1 p.i.) are shown. (D) Viral loads in tissue and serum of C57BL/6J at day 7 p.i. (E) Viremia in miR-122⁻/⁻ mice and controls at day 7 p.i. Panels (A), (B), (D), and (E) show representative data from two to five independent experiments with four or five mice per group (mean ±SEM).
Fig. 2. NrHV clearance in immune-competent mice is associated with a strong intrahepatic antiviral immune response. Eight-week-old C57BL/6J mice were infected i.v. with \(10^4\) GE of NrHV. (A) Viremia during acute resolving infection. (B) Flow cytometric analysis of total numbers of hepatic Ly6C+monocytes, NKp46+ NK cells, CD3+CD4+ T cells, and CD3+CD8+ T cells during acute infection. Dotted lines indicate baseline levels. (C to E) Flow cytometric analysis of peripheral and hepatic T cells during acute NrHV infection. Frequencies of CD44+ effector cells (C), T-bet+ cells (D), and IFN-\(\gamma\)-producing cells (PMA/ionomycin stimulation) (E) within the CD4+ (upper panels) and CD8+ (lower panels) T cell subsets are shown. (F) ALT levels in serum of mice. Dotted line indicates baseline level. (G) Representative hematoxylin and eosin (H&E) histology at day –1 and day 9 p.i. Scale bars, 100 \(\mu\)m. Representative data from two independent experiments with four mice per group (mean ±SEM) are shown.

Fig. 3. Clearance of NrHV infection is T cell dependent. (A) Eight-week-old C57BL/6J mice were transiently depleted of CD4+ or CD8+ T cells with antibodies (day 4 before infection; day 7 and 28 p.i.) and infected with \(10^4\) GE of NrHV. Viremia was analyzed until day 56 p.i. (B) Mice were either transiently or constantly (day 4 before infection; every 10 days p.i.) depleted of CD8+ T cells and infected with \(10^4\) GE NrHV. Viremia was analyzed until day 56 p.i. (C) Mice that cleared NrHV infection more than 4 months before were reinfected with \(10^4\) GE of the same inoculum. One group of mice was depleted of CD8+ T cells 4 days before reinfection. Primary infection in age-matched mice served as a control. Viremia at days 1, 5 and 7 p.i. is shown. (D) NrHV-specific IFN-\(\gamma\) production of CD8+ T cells at day 5 after reinfection. Cells were stimulated ex vivo with NrHV NS3 or NS4 peptide pools. Representative data from two to five independent experiments with four or five mice per group (mean ±SEM) are shown. ***P \leq 0.0001 (unpaired Student’s t test); ns, not significant.
or 10^2 GE NrHV with serum from mice that previously cleared infection mostly prevented infection of naive mice with 10^4 GE but not with 10^6 or 10^8 GE (fig. S9D). This suggests that ntAbs are produced but at a frequency too low to completely prevent NrHV reinfection. That is similar to HCV infection, where previously infected humans and chimpanzees can be reinfected with the same HCV strain (10). We also investigated the potential role of NK cells in viral clearance. During NrHV infection, we observed increased numbers, activation (CD69 expression), and IFN-γ production of hepatic NK cells, starting at day 3 p.i. (Fig. 2B and fig. S10, A to C). This was attributed to an expansion in the number of conventional CD49b⁺ NK cells while the number of liver-resident CD49a⁻ NK cells (15) remained stable, leading to a substantial change in the hepatic CD49b⁺ to CD49a⁻ NK cell ratio over the course of infection (fig. S10, D and E). NK cell depletion resulted in significantly elevated viremia at day 3 p.i. However, the kinetics of viral clearance and the extent of liver injury were similar in NK cell-depleted mice and controls (fig. S10, F and G). Thus, NK cells may contribute to the control of NrHV early in infection, but they are not required for NrHV clearance.

Chronic viral hepatitis in humans and chronic LCMV infection in mice are characterized by antigen-specific T cell dysfunction and exhaustion (10, II). Mechanisms contributing to this phenomenon include the up-regulation of checkpoint inhibitors (e.g., PD-1 (programmed cell death 1)) or suppression by regulatory Foxp3⁺CD4⁺ T cells (16) that produced but at a frequency too low to completely prevent NrHV reinfection.

Chronic NrHV infection also displayed elevated frequencies of intrahepatic CD8⁺ T cells with an exhausted phenotype characterized by PD-1highCD44low surface expression (Fig. 4, C and D), coexpression of the inhibitory receptors 2B4 and Tim-3, and high expression levels of the transcription factor Foxp3 (Fig. 4, F and G). Inhibition of these checkpoint inhibitors (e.g., PD-1) restored antiviral immunity in NrHV-infected mice (Fig. 4, H and I). Thus, NrHV established a long-term chronic infection in immune-competent mice (Fig. 3A) that was associated with mild liver inflammation (fig. S11). We found that chronic infection, in contrast to acute clearance, coincided with the emergence of intrahepatic Tregs that remained at high levels throughout infection (Fig. 4, A and B). Thus, suppression of antiviral immune responses by Tregs might play a role in the establishment of chronic NrHV infection.

Fig. 4. Chronic NrHV infection is associated with hepatic CD8⁺ T cell exhaustion. Flow cytometric analysis of C57BL/6J mice that developed chronic NrHV infection after transient CD4⁺ T cell depletion. (A) Foxp3⁺CD4⁺ Treg frequencies within the CD4⁺ T cell subset in blood (left) and liver (right) during acute resolving and chronic NrHV infection. (B) Representative flow cytometry plots showing hepatic Tregs, at day 210 p.i. (C) Frequencies of PD-1highCD44low CD8⁺ T cells at day 42 and 210 p.i. in blood (left) and liver (right). (D) Representative flow cytometry plots showing hepatic PD-1highCD44low CD8⁺ T cells at day 210 p.i. (E to G) Chronically NrHV infected C57BL/6J mice were treated with a PD1-L blocking antibody or appropriate IgG control starting at day 42 (E), day 84 (F), or day 140 (G) p.i. Viremia was analyzed at day 1 before the start of treatment and compared to viremia at day 14 (E) or day 21 [(F) and (G)] after treatment. Representative or combined data from two to five independent experiments with four or five mice per group (mean ±SEM) are shown. *P ≤ 0.01, **P ≤ 0.001, ***P ≤ 0.0001 (unpaired and paired Student’s t test).
factor comesoderm (fig. S12A) (16, 17). The frequencies of these cells were lower in acute resolving mice, suggesting that chronic NrHV infection may lead to T cell exhaustion (Fig. 4C).

Checkpoint inhibitor blockade [e.g., the inhibition of PD-1/PD-1 ligand (PD-1L) interactions] is a promising immunotherapy that can invigorate exhausted T cells (18). PD-1/PD-1L blockade showed mixed results when tested in HCV-infected chimpanzees and patients, so its efficacy in the setting of chronic viral hepatitis is still unclear (19, 20). We thus tested whether PD-1L blockade could reduce viremia during chronic NrHV infection in mice (fig. S6D). Blockade at day 42 p.i. significantly reduced viremia (0.5 to 1 log) at day 14 after start of treatment, whereas blockade at day 84 p.i. reduced viremia only at day 21 after start of treatment. At an even later time point (day 140 p.i.), no decrease in viremia was observed (Fig. 4, E to G, and fig. S12, B and C). These results suggest that blockade of the PD-1-PD-1L pathway can reduce NrHV viral loads only during early chronic infection.

In this study, we have developed an immune-competent inbred mouse model of an HCV-related hepacivirus. Because NrHV can adapt to infect mice with diverse genetic backgrounds, this model can potentially help unravel mechanisms of hepativirus host adaptation, immune evasion, and the development of liver disease. It can also be used to select for viral variants that can establish chronic infection in immune-competent mice. Given the similarities between NrHV infection in mice and HCV infection in humans, this model might prove valuable in the future for the development and testing of HCV vaccines.

REFERENCES AND NOTES

ACKNOWLEDGMENTS

We thank M. MacDonald, M. Saeed, and W. Schneider for manuscript editing. This work was supported by the NIH (grants R01AI072613, R01CA057973, and R01AI131688-01), The Starr Foundation, the Greenberg Medical Research Institute, and several generous donors (C.M.R.); NIH grant AI07631 and the Nationwide Children’s Hospital Research Institute (A.K); the Danish Council for Independent Research [grants 6100-00595 and 6111-00334 (T.K.H.S)]; grant 4004-00598 (J.B.)); The Novo Nordisk Foundation [grants NNF15OC0017404 (T.K.H.S.) and NNF14OC0012533 (J.B.)]; The Lundbeck Foundation (grants R192-2015-1154 (T.K.H.S.), R221-2016-1455 (J.B.)]); and NIH grant R01AI193244 (K.G). The HCV-related hepacivirus NrHV is available from the authors under a material transfer agreement. The ORF consensus sequence of the NrHV rat inoculum was deposited at GenBank (accession no. MF113386). The authors declare no conflict of interest.

SUPPLEMENTARY MATERIALS

www.sciencemag.org/content/357/6347/204/suppl/DC1

Material and Methods

Figs. S1 to S12
Tables S1 and S2
References (21, 22)

11 October 2016; resubmitted 3 April 2017
Accepted 5 June 2017
10.1126/science.aal1962
Mouse models of acute and chronic hepacivirus infection

Eva Billerbeck, Raphael Wolfsberg, Ulrik Fahnøe, Jing W. Xiao, Corrine Quirk, Joseph M. Luna, John M. Cullen, Alex S. Hartlage, Luis Chiriboga, Kalpana Ghoshal, W. Ian Lipkin, Jens Bukh, Troels K. H. Scheel, Amit Kapoor and Charles M. Rice

Science 357 (6347), 204-208.
DOI: 10.1126/science.aal1962

New York City rats provide a gift to virologists

Despite the development of curative drugs for hepatitis C virus (HCV) infection, global eradication of HCV will likely require a prophylactic vaccine. Progress toward a vaccine has been impeded by the absence of mouse models suitable for studying the immune response to HCV. Billerbeck et al. found that a HCV-related virus isolated from New York City rats produces an infection in laboratory mice that shares several immunological features with human infections (see the Perspective by Klenerman and Barnes). Their initial analyses of the infected mice revealed that acute clearance of the virus was dependent on T cells but not on natural killer cells.

Science, this issue p. 204; see also p. 129