When I was awarded a 3-year graduate fellowship from the U.S. Environmental Protection Agency (EPA) in the fall of 2015, I was elated to have the freedom to dedicate myself to my research on aquatic invasive species. But I was also a little worried. A lack of funds had forced a last-minute cancellation of the previous year’s fellowship competition, the award notifications for my cohort came months behind schedule, and future competitions for the fellowship were canceled indefinitely. My funding finally arrived, after a 9-month delay, but the message was clear: These fellowships sat on a razor’s edge.

However tenuous my fellowship may have seemed, I was unprepared for the chaos that erupted when the EPA came under the authority of a presidential administration openly hostile to the agency’s very existence. Immediately after the inauguration, news reports that the EPA had been ordered to freeze all spending began to appear. I asked whether my fellowship would be affected, but the agency was under a gag order. An official advised me (off the record) that the best information would come from my bank account. If the checks kept coming, I still had a fellowship. If the checks stopped, I could infer that the fellowship was canceled, and I should be prepared to return any unspent research funds. Since then, media reports have been my only source of information about whether my program has been cut. My anxiety increased in March, when a leaked EPA budget document specifically singled out my fellowship—called Science to Achieve Results, or STAR—for deletion.

While I wait for the axe to fall (and hope that it doesn’t), this new EPA gives me plenty of other issues to ponder. Does my work provide legitimacy to an agency that is now moving to obstruct meaningful climate progress? Does the erosion of the EPA’s scientific credibility cast a shadow over my research? Do I follow the threads of my research connected to climate change and risk incurring the wrath of some politically appointed administrator, or should I shape my work to avoid inconvenient topics? If I were an EPA employee, publicly asking these questions would almost certainly get me fired. Even as it stands, I worry that after this article is published some error or omission will be suddenly discovered among my EPA files and my fellowship will be rescinded. I am extraordinarily grateful for the support I receive from the EPA, but I am also deeply concerned about the future of the agency.

Beyond that, I am worried about my nation’s scientific institutions as a whole. Scientists in the United States face a shortage of tenure-track faculty jobs and fierce competition for a shrinking pool of grants. These dimming prospects reflect decades of underinvestment in the sciences. The current administration threatens to make things worse. We are all doing research on a razor’s edge.

It’s no surprise that American scientists are becoming increasingly curious about opportunities elsewhere in the world. U.S. spending on research and development still ranks among the highest, but those who are willing to explore can find opportunities in countries with broad institutional, political, and public support for the sciences—places where the doors remain open for immigrants, especially those with advanced degrees.

For my part, after I complete my Ph.D., I’m aiming to return to Switzerland, where I formerly lived as a Fulbright fellow and developed strong and enduring connections. My plan to build a scientific career among the foothills of the Alps might have seemed like a romantic pipedream in a different era, but given the rapidly changing landscape in my own country, it looks more practical every day. To all the young U.S. scientists out there, whatever your path may be, I wish you luck in charting your own way forward through these strange and difficult times.

Eric Dexter is a doctoral candidate in environmental and natural resource science at Washington State University in Vancouver. Do you have an interesting career story? Send it to SciCareerEditor@aaas.org.
Research on a razor's edge
Eric Dexter

Science 356 (6342), 1094.
DOI: 10.1126/science.356.6342.1094