Report

Semiconducting polymer blends that exhibit stable charge transport at high temperatures

See allHide authors and affiliations

Science  07 Dec 2018:
Vol. 362, Issue 6419, pp. 1131-1134
DOI: 10.1126/science.aau0759

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Beating the heat by blending

Charge carriers move through semiconductor polymers by hopping transport. In principle, these polymers should be more conductive at higher temperatures. In practice, conductivity drops at high temperatures because interchain contacts are disrupted, which limits potential applications. Gumyusenge et al. now show that appropriate blending of a semicrystalline conjugated polymer with an insulating polymer that has a high glass-transition temperature creates a morphology that stabilizes a network of semiconductor channels. High charge conductivity was maintained in these materials up to 220°C.

Science, this issue p. 1131

Abstract

Although high-temperature operation (i.e., beyond 150°C) is of great interest for many electronics applications, achieving stable carrier mobilities for organic semiconductors at elevated temperatures is fundamentally challenging. We report a general strategy to make thermally stable high-temperature semiconducting polymer blends, composed of interpenetrating semicrystalline conjugated polymers and high glass-transition temperature insulating matrices. When properly engineered, such polymer blends display a temperature-insensitive charge transport behavior with hole mobility exceeding 2.0 cm2/V·s across a wide temperature range from room temperature up to 220°C in thin-film transistors.

View Full Text