Report

Controlled crack propagation for atomic precision handling of wafer-scale two-dimensional materials

See allHide authors and affiliations

Science  09 Nov 2018:
Vol. 362, Issue 6415, pp. 665-670
DOI: 10.1126/science.aat8126

You are currently viewing the editor's summary.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

Cleaving with a metal handle

Using adhesive tape to pull off monolayers of two-dimensional (2D) materials is now a well-established approach. However, the flakes tend to be micrometer scale, and the creation of multilayer stacks for device application can be challenging and time consuming. Shim et al. show that monolayers of a variety of 2D materials, including molybdenum disulfide and hexagonal boron nitride, can be cleaved from multilayers grown as 5-centimeter-diameter wafers. The multilayer is capped with a nickel layer, which can be used to pull off the entire grown stack. The bottom of the stack is again capped with nickel, and a second round of cleaving leaves the monolayer on the bottom nickel layer. The monolayers could be transferred to other surfaces, which allowed the authors to make field-effect transistors with high charge-carrier mobilities.

Science, this issue p. 665