Report

Observation of an environmentally insensitive solid-state spin defect in diamond

See allHide authors and affiliations

Science  06 Jul 2018:
Vol. 361, Issue 6397, pp. 60-63
DOI: 10.1126/science.aao0290

You are currently viewing the abstract.

View Full Text

Log in to view the full text

Log in through your institution

Log in through your institution

In search of the right diamond defect

Certain defects in diamond are among the most promising physical implementations of qubits, the building blocks of quantum computers. However, identifying a defect with balanced properties is tricky: Nitrogen vacancy centers have a long lifetime but comparatively poor optical properties, whereas negatively charged silicon vacancy centers have the opposite characteristics. Rose et al. used careful materials engineering to stabilize the neutral charge state of silicon vacancy centers and found that they combine long coherence times with excellent optical properties.

Science, this issue p. 60

Abstract

Engineering coherent systems is a central goal of quantum science. Color centers in diamond are a promising approach, with the potential to combine the coherence of atoms with the scalability of a solid-state platform. We report a color center that shows insensitivity to environmental decoherence caused by phonons and electric field noise: the neutral charge state of silicon vacancy (SiV0). Through careful materials engineering, we achieved >80% conversion of implanted silicon to SiV0. SiV0 exhibits spin-lattice relaxation times approaching 1 minute and coherence times approaching 1 second. Its optical properties are very favorable, with ~90% of its emission into the zero-phonon line and near–transform-limited optical linewidths. These combined properties make SiV0 a promising defect for quantum network applications.

View Full Text